
Ruby on Rails
from the other side
of the tracks

Tom Armitage
LRUG, August 8th

aka

“working with your
design team”

Tom Armitage
LRUG, August 8th

Who here makes
stuff on the web? In

Rails, maybe?

Who would say they
were roughly

between “good”
and “expert” at
either Ruby or

Rails?

You may be used to
the following

screens. But. This is
not the web:

nor is this:

nor is this:

(thank god)

the Web is

HTML

HTML

XHTML

CSS

Who here would say
they had expert-

level XHTML?

Why the hell don’t
you?

It’s OK, we have
people to do this for

us:

Designers!

They will save us
with their rounded
corners and stock

photos!

More to the point,
some of them might

be good at that
XHTML lark!

Sometimes
dedicated people
(not “designers”)
write markup - so

also talk to:

Client-side
developers

Markup monkeys

Anyway...

What to do with front-enders

Don’t assume you know better

Don’t outsource

Get them on board

Get them templating

Why?
Close the loop

Give them ownership

Let them do their job

Avoid mistakes

Mistakes, you say?

<ul class=’someclass’>
An item
Another item
The third item

A list of items.

<ul class=’someclass’>
for item in @items
<%= item.name=>
end

The developer immediate approach.

<ul class=’someclass’>

Whoops.

This is valid XHTML 1.0
strict, but it may also lead to
positional/aesthetic issues.

Text

(It’s also bobbins, semantically.)

<ul class=’someclass’>
for item in @items
<%= item.name=>
end

Let’s improve this...

if @items.size > 0
<ul class=’someclass’>
for item in @items
<%= item.name=>
end

end

That’s better.

if @items.size > 0
<ul class=’someclass’>
for item in @items
<%= item.name=>
end

else
 <p>You have no items</p>
end

(Best).

How?
Get them into source control

If you explain it well enough,
everyone loves version control

Collaborate on working wireframes

Answer their questions

Ask them questions

Intervene (eg with helpers)

Some notes

Javascript & AJAX

AJAX is cool!

Javascript is
coming back into

fashion.

(Who here would
say they had expert
level Javascript?)

(Work on it - it’s
going to come in

handy)

Libraries make
Javascript much

less of a PITA.

Libraries are heavy

Library weigh-in:

prototype.js - 56kb

effects.js - 34kb

controls.js - 29kb

dragdrop.js - 30kb

The problems with Prototype

Scaffolding gives you bad habits:
<%= javascript_include_tag :defaults %>

That’s 146kb on your page load

And it loads serially

Use what you need

You don’t even need Prototype
for basic JavaScript

Helpers and
accessiblity

Rails’ HTML helpers
are pretty great

Rails’ HTML helper are:
Accessible!

Valid!

Powerful!

Rails’ Javascript
helpers, on the
other hand...

They work...

...but not like they
should.

eg

<a href=”#”
onclick=”...”>

foo

<a href=”/
toggle-user”

class=”toggle-
user”>
foo

Seriously, though:
Javascript has thorny
accessibility issues.

AJAX can be really inaccessible:

Screenreaders

Not just screenreaders

Well-written Javascript goes a
long way to make things easier

“Hijax”
Write without Javascript

Then progressively add it, focusing
on ids and classnames to act as
hooks

Best of both worlds

Yes, this doesn’t work for some
apps - but Web 2.0 doesn’t need
to mean “inaccessible” all the time.

What’s Rails doing
about this?

I asked DHH...

“Fuck off”

For everyone
reading these slides
who wasn’t at the

talk: DHH didn’t say
this. It’s a joke.

however...

Luke Redpath and
Dan Webb rule!

Accessible
Javascript Plugin:
http://tinyurl.com/znzmc

It’s awesome

Accessible Javascript Plugin

Minimal changes to your code

No inline reference to Javascript!

Dynamically generated .js

Dynamically generated event
handling

...and more

seriously impressive.

Testing

Everybody loves
test-driven

development, right?

Testing XHTML
Easy: W3C validator

Valid code is easier to debug

if it breaks, it’ll break in a
consistent manner

no point writing invalid XHTML

Want to automate that?

assert_valid_markup

def assert_valid_markup(markup=@response.body)
 require 'net/http'
 response = Net::HTTP.start('validator.w3.org') do |
w3c|
 query = 'fragment=' + CGI.escape(markup) +
'&output=xml'
 w3c.post2('/check', query)
 end
 assert_equal 'Valid', response['x-w3c-validator-
status']
end

No excuse for
developers breaking
front-end code any

more!

Going further
Test components of your page
with something like Hpricot

Counting elements: boring

Checking <title> is what it
should be: useful

Selenium, Watir

Beyond my scope, but certainly
also useful

To summarise

XHTML/CSS/JS
are core

components of your
app, like it or not

Designers and
client-side
developers

know their stuff, so
use them!

Take accessibility
seriously

Take validation
seriously

Treat your front-end
folks, and their

code, as first-class
citizens. The web is,

after all, only
XHTML.

Thanks!
Recommended reading:

Designing With Web Standards -
Jeffrey Zeldman

Web Standards Solutions -
Dan Cederholm

CSS Mastery - Andy Budd

DOM Scripting - Jeremy Keith

The Rhino (O’Reilly js book)

